

EuroFIR Web Services:
Specifications for EuroFIR request-response based Web

services

Version 1.2

April 2015

SUMMARY

EuroFIR Web Services provide an interface for the food composition information data
interchange. This specification defines the interface for these EuroFIR Web services and the
format for the requests and responses. Moreover, the specification defines the authentication
methods. The requests use specially designed Food Data Query Language (FDQL), which is
part of the specification. The responses use Food Data Transport Package (FDTP) for
delivering food composition information and specially designed Meta Data Transport Package
(MDTP) for delivering meta information. The current version of the EuroFIR Web Services
supports Simple Object Access (SOAP) protocol.

Content

Introduction ... 5	

Objective .. 5	

Background .. 5	

Terminology .. 7	

General Terms .. 8	

Process Flow .. 9	

Web Service Request ... 10	

Web Service Response .. 11	

Normal Response ... 11	

Error Message .. 12	

Advice for the developers ... 13	

Web Services Authentication ... 14	

Authentication keys ... 14	

Signing the request ... 15	

Checking the request .. 15	

Risk management of the identification keys ... 15	

Authentication errors ... 15	

Advice for the developers ... 16	

Food Data Query Language (FDQL) .. 16	

FDQL Data Model ... 16	

FDQL Data Model Restrictions ... 19	

FDQL Reserved Words .. 20	

FDQL Implementation ... 24	

FDQL Sentence Structure in XML .. 24	

Example of the FDQL Sentence ... 25	

Semantic Rules for the FDQL Sentence Translation 27	

General Interpretation Rules ... 27	

Joins Between the Entities .. 28	

Validation of the FDQL Sentence ... 30	

WHERE-clause Evaluation ... 31	

Ordering with the ORDER BY -clause .. 32	

Food related semantic rules ... 32	

Component Related Rules .. 33	

Component Value Related Rules ... 35	

Metainformation Related Rules .. 36	

Metadata Transport Package (MDTP) ... 38	

Main structure of the MDTP .. 38	

Grouping -structure ... 39	

FCDB_Describe .. 40	

ComponentList .. 40	

FoodList .. 40	

TermList .. 41	

Grouping ... 41	

Web Services ... 42	

GetComponentList .. 42	

GetContentInformation ... 43	

GetFCDBContent .. 45	

GetFoodCount .. 47	

GetFoodCountByProductType .. 49	

GetFoodInformation .. 51	

GetFoodList .. 53	

GetSupportedTerms ... 54	

Error Messages and Error Codes ... 55	

References ... 59	

Introduction	

The preliminary specifications for the EuroFIR Web Services were originally
created by the European Food Information Network (EuroFIR project, 2005-
2010). The EuroFIR project was a Network of Excellence funded by the
European Commission's Research Directorate General under the "Food
Quality and Safety Priority" of the Sixth Framework Programme for Research
and Technological Development.

Objective	

This specification defines the EuroFIR Web Services, version 1.2. The
objective of the specification is to ensure that food composition data can be
interchanged using standardized methods with a network Web Services (i.e.
the EuroFIR Web Services) implemented by the EuroFIR partners. This
specification defines the rules and requirements for the implementation and
the user interface of these Web Services.

The XML schemata are published on the EuroFIR AISBL website (1). The
response including FDTP or MDTP is required to be validated against these
XML schemata.

The EuroFIR Web Services support Simple Object Access (SOAP) protocol
(2).

Important source of information can be found in the EuroFIR Thesauri (3),
which is a set of standard vocabularies. Each thesaurus consists of a set of
concepts that may be arranged within a hierarchy. A concept is represented
by a main descriptor – a term representing the concept – and is generally
further described with a scope note, additional information, synonyms and
related terms. All thesauri are available on the EuroFIR technical website (1)
and updated regularly.

The EuroFIR Web Services support the character encoding UTF-8.

Background	

Understanding this specification requires conversance with following
documents:

• Proposal for structure and detail of a EuroFIR standard on food
composition data: I: Description of the standard.(4)

• Proposal for structure and detail of a EuroFIR standard on food
composition data: II: Technical Annex (5); referenced in this document
as “Technical Annex”.

• EuroFIR Web Services - Food Data Transport Package, Version 1.4.
(6); referenced in this document as “FDTP”

• LanguaL Food Description Thesaurus 2012 (or later) (7); referenced in
this document as “LanguaL”

• EuroFIR Web Services: Background report (8); referenced in this
document as “Background report”

The harmonization and the standardization of the food composition data and
the compilation procedures is a long-lasting process: things change and
evolve over time and consequently the documents are not perfect or entirely
coherent with each other. Thus, interpretation is sometimes needed. As the
central point of the EuroFIR Web Services is sending data in the form of the
FDTP, enabling this guides the interpretation. Thus, the 'interpretation order'
for the implementation of these EuroFIR Web Services is:

• this document
• FDTP
• Technical Annex
• other above mentioned documents

This documentation should be used together with the technical documentation
available on the EuroFIR AISBL website (1). This documentation includes
following:

• EuroFIR Web Service description in WSDL
• XML schemata for the FDTP
• XML schemata for the MDTP (MDTP is explained later in this

document)
• XML schemata for the Food Data Query Language (FDQL is explained

later in this document)

Terminology	

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC 2119
(9).

This specification refers to standard vocabularies and versions shown in Table
1. This specification uses also several other naming standards presented in
Table 2.

Table 1. Standard vocabularies and versions
Thesaurus Version Reference
EuroFIR Acquisition Type Thesaurus 1.1 (3)
EuroFIR Component Thesaurus 1.4 (3)
EuroFIR Value Type Thesaurus 1.1 (3)
EuroFIR Unit Thesaurus 1.1 (3)
EuroFIR Matrix Unit Thesaurus 1.3 (3)
EuroFIR Method Type Thesaurus 1.1 (3)
EuroFIR Method Indicator Thesaurus 1.3 (3)
EuroFIR Reference Type Thesaurus 1.1 (3)
LanguaL Thesaurus 2012 (7)

Table 2. Other naming standards
Naming standard Date Reference
ISO 639. Code for the representation of
the names of languages

1988 (10), see also Technical
Annex

ISO 3166-1 Codes for the
representation of names of countries
and their subdivisions

1997 (11), see also Technical
Annex

RFC 3066: Tags for the Identification of
Languages. (XML language tags)

2001 (12)

General	
 Terms	

Web	
 services	

This specification uses the term 'Web services' referring to the aggregation of
different EuroFIR Web Services specified in this document.

Partner	
 Web	
 service	

This specification uses the term 'Partner Web service' referring to one Web
Service as a part of Web services; This Web service is provided by Web
service provider.

Web	
 service	
 providers	

This specification uses the term 'Web service providers' referring to the
members of the EuroFIR AISBL implementing the Web services.

User	
 application	

These Web services are designed to be used by different search tools for
searching and retrieving the food composition information and processing it.
They are all referred to as 'user application'.

User	
 application	
 providers	

This specification uses the term ‘User application providers' referring to all
different parties implementing and managing the user applications.

End-­‐user	

This specification uses the term ‘end-user' referring to an abstraction of the
group of persons using the food composition information (via user
applications).

FCDB	

Food Composition Database (FCDB) is a database with information about
foods and their composition. In this specification, the term refers to FCDBs
maintained by the Web service providers.

FDTP	

Food Data Transport Package used in the data interchange (6)

MDTP	

Metadata Transport Package is a data transportation package used for
providing information about the Partner Web service and its FCDB. (See
chapter Metadata Transport Package (MDTP) in this document)

For other terms and acronyms see the Background report. If some standard
has several versions and it is essential to know which version we are referring
to , the reference is given in this specification when the standard is mentioned
(e.g. SOAP “envelope” (2))

Process	
 Flow	

1. Request reception and delegation
2. Authentication
3. Query validation
4. Query interpretation and translation to FCDB query/queries
5. FCDB query/queries
6. FDTP compilation
7. Response compilation and sending

This specification defines processes 1 - 3 and 7. It also includes semantic
rules for the tasks in the process 4 but detailed implementation is partner
specific. The processes 5 and 6 are entirely partner specific. All processes
require appropriate error handling: See Error messages and error codes.

Web	
 Service	
 Request	

Web service requests SHALL use SOAP "envelopes" (2).

The request

• MUST use either the UTF-8 (13) encoding.
• MUST be a well-formed (XML 1.0) document (14)
• MUST contain method element for Web service identification
• MUST contain parameters for authentication.

The request in the envelope is posted to a URL.

The first element inside the body MUST be the methodname element. (i.e. the
name of the Web Service, e.g.eur:GetFoodInformation) Each request
parameter SHALL be a single child of that (like e.g. elements eur:api_userid,
eur:api_permission…). The method element identifies the Web Service where
the request is delegated to.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:eur="http://eurofir.webservice.namespace">
 <env:Body>
 <eur:methodname>
 <eur:parametername>value</eur:parametername>
 </eur:methodname>
 </env:Body>
</env:Envelope>

Web	
 Service	
 Response	

Web service responses SHALL use SOAP "envelopes" (2)

The response

• MUST use either the UTF-8 (13) encoding.
• UTF-8 is RECOMMENDED as FDTP uses that as default encoding
• MUST be a well-formed (XML 1.0) document (14)

A return to the response will be either:

1. Normal response with a FDTP
2. Normal response with a Metadata Transfer Package (MDTP)
3. Error message

Normal	
 Response	

FDTP or MDTP included in the normal response MUST be valid i.e. validated
against the appropriate XML schemata.

FDTP	

Metadata	
 Transfer	
 Package	
 (MDTP)	

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
 <EuroFIRServiceFDTPResponse xmlns="http://eurofir.webservice.namespace">
 <EuroFIRFoodDataTransportPackage>
 <!--put your data here-->
 </EuroFIRFoodDataTransportPackage>
 </EuroFIRServiceFDTPResponse>
 </env:Body>
</env:Envelope>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Body>
 <EuroFIRServiceMDTPResponse xmlns="http://eurofir.webservice.namespace">
 <EuroFIRMetaDataTransportPackage>
 <!--put your data here-->
 </EuroFIRMetaDataTransportPackage>
 </EuroFIRServiceMDTPResponse>
 </env:Body>
</env:Envelope>

Error	
 Message	

faultcode	
 	

SOAP standard fault codes.

faultstring	

Web Services Error message (see Error messages and error codes)

detail	

Additional information about the error. For example the Web Services error
code and a description of the reason for the error (see Error messages and
error codes).

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Body>
 <env:Fault xmlns:flt="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>env:SOAP standard fault code (like e.g. env:Server)</faultcode>
 <faultstring>Some Web service error message (like e.g. Invalid message signature
checking)</faultstring>
 <detail>
 <EuroFIRServiceFault:EuroFIRServiceFault
xmlns:EuroFIRServiceFault="http://eurofir.webservice.namespace"
xmlns="http://eurofir.webservice.namespace">
 <errorcode>Web service errorcode (like e.g. E2022)</errorcode>
 <reason>Some detailed error description</reason>
 </EuroFIRServiceFault:EuroFIRServiceFault>
 </detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Advice	
 for	
 the	
 developers	

<eur:fdql_sentence><![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.0</SchemaVersion>
 <Schema>EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>Content</FieldName>
 </SelectClause>
</FDQL_Sentence>]]></eur:fdql_sentence>

Ensure that your implementation really encodes the FDTP with UTF-8 as other
encodings will cause complications in the user applications. It is usually not enough to
only add the correct UTF-8 header. Moreover, the default settings of the implementation
tools (e.g. Java) seem to produce encoding which is not UTF-8 and it has to be defined
in the programming code that UTF-8 is used in every phase when the XML is produced.
However, when the data contains only simple ASCII characters, it is very difficult to see
whether the encoding is really UTF-8. Use UTF-8 compatible editor for creating test
cases and it is RECOMMENDED to use non-ASCII characters in the testing.

The Food Data Query Language (FDQL) statement is often part of the request. In these
cases, it is RECOMMENDED to use CDATA sections for the query sentence.

Web	
 Services	
 Authentication	

The main principle of the Web services authentication is that Web service
providers control the access to their resources. All requests MUST be
authenticated. The authentication is done at the user application level, not at
the end user level. However, the user applications SHALL have their own
authentication for the end users but that is out of the scope of this
specification.

The Web service provider delivers the needed access keys to the user
application provider.

Authentication	
 keys	

The EuroFIR Web service provider SHALL deliver three keys to the user
application provider:

1. User application identification key
2. User application secret key
3. User application permission key is currently not used for setting

permissions but for support for multiple databases

User	
 application	
 identification	
 key	

This key MUST be used for the user application identification and it MUST be
included with each request.

• A 20-character, alphanumeric sequence (for example
1079812AWLTL45NLS3IP).

• Parameter name: api_userid

User	
 application	
 secret	
 key	

This key MUST be used for the calculation of the signature.

• A 40-character sequence (for example
1+09ku7jht/akHT2LO86zxcMK912hT/hlKU46QWC).

• Referred in the procedures as 'SECRET'.

User	
 application	
 permission	
 key	

When implemented this key MUST be used for defining different access
profiles and it MUST be included with each request.

• Currently, this is used for defining from which country database the
data is being requested (e.g., si [for Slovenia])

• Parameter name: api_permission

Signing	
 the	
 request	

Each request MUST be signed using a hash-based message authentication
code. This is done by calculating a hashed parameter using the user
application secret key and the parameters in the request.

• Hashing uses the SHA-1 Message-Digest Algorithm (SHA1) (15)
• Parameter name: api_signature

Signature	
 calculation	
 procedure	

• Sort the argument list into alphabetical order based on the parameter
name; e.g. foo=1, bar=2, baz=3 sorts to bar=2, baz=3, foo=1

• concatenate the shared secret and argument name-value pairs; e.g.
SECRETbar2baz3foo1

• calculate the SHA1() hash of this string
• append this value to the argument list with the name api_signature, in

hexidecimal string form; e.g.
api_signature=1f3870be274f6c49b3e31a0c6728957f

Checking	
 the	
 request	

When a request is received by the Web service, the authentication is checked.
If the request does not pass the checking, access is revoked and the proper
error message is returned (see Error messages and error codes).

Risk	
 management	
 of	
 the	
 identification	
 keys	

The user application provider MUST control the access to these keys and they
SHALL NOT be provided to end users. These keys are used inside the Web
services and the user applications and they MUST be stored so, that only
those applications can access them. Encryption is RECOMMENDED in the
storing of the keys.

Authentication	
 errors	

See Error messages and error codes

Advice	
 for	
 the	
 developers	

Food	
 Data	
 Query	
 Language	
 (FDQL)	

Web services use a Food Data Query Language (FDQL) for the defining of
the food information content and the search options used in the requests. This
language resembles SQL but is more abstractive in its nature because it is not
connected to any existing data model in any specific FCDB. Thus, the FDQL
is connected with an abstract data model and the FDQL sentence needs to be
translated to an actual query (or queries) which may differ in each individual
implementation. This specification does not define what the actual query
should be – it only defines the rules for the translation. Some of the rules are
defined by the FDQL features and they are supplemented by the semantic
rules.

FDQL	
 Data	
 Model	

This data model defines the entities and their relations in the way that a FDQL
sentence can be translated to FCDB queries. The FDTP uses the same
entities, but their relations are structured slightly differently. However, the
current data model can be used for constructing the FDTP. We know also that
different FCDBs may be designed differently: it is entirely possible that in
some FCDB e.g. food names are in a separate table and in some other FCDB
they may be columns of the food table. Still, in both cases the FDQL sentence
can be translated into FCDB query (or queries) and produce the standardized
FDTP. These are the only criteria for the interface.

The entities are connected with relations, which use identifiers of some kind
(usually a pair of primary key-foreign key). However, the only public identifiers
that are visible outside in a sense that they may be used in the FDQL queries
are:

• the original food id (origfdcd in the FDTP)
• the original component code (origcpcd in the FDTP)

This means that even there are other private identifiers connecting the entities
(like e.g. food with foodnames or component value with method), these
identifiers are not available in the FDQL sentences - we just assume that the

Ensure that your implementation uses the UTF-8 encoding. The different
encodings produce different api_signatures. As the user application is
expecting to receive UTF-8, it calculates the signature with UTF-8.
However, If the original request was signed with a different encoding, the
signatures will not match and the request will fail. See the advice in the
previous chapter.

entities are connected by some mean. Consequently, all associations are
predefined and fixed: the entities cannot be linked differently in different FDQL
sentences (see Semantic rules for FDQL translation) - this is also the biggest
difference between a subset of SQL and FDQL.

The main entities are food, component and component values (Figure 2).
These main entities form groups related with them entities:

• Food related entities (Figure 3)
• Component related entities (Figure 4)
• Component Value related entities (Figure 5)

Figure 2. Main entities.

This basic structure forms the basic linking for the FDQL: Component Value is
always linked with some Food and some Component. All other entities are
subordinate to these main entities: they are additional information which may
exist or may not exist (some fields are mandatory some are optional). This is
also an essential feature of the semantic rules in the FDTP, these same main
entities – now XML elements – form the main structure of the package: Food
à Component à Component Value.

There are also some entities, which are not related with the main entities,
referred here as assisting entities (Figure 6).

Figure 3. Food related entities.

Figure 4. Component related entities.

Figure 5. Component Value related entities.

Figure 5. Assisting entities.

We use a term 'field' referring to an element which is usually a column in a
relational data base table. In the FDTP, which uses XML, these 'fields' are
sometimes presented as 'elements' and sometimes 'attributes' and it would be
confusing to use the term 'attribute' instead of 'field'. Note that this
specification does not contain all existing fields or their specification and
FDTP and Technical Annex should be used as the comprehensive reference.

FDQL	
 Data	
 Model	
 Restrictions	

Standard	
 vocabularies	
 are	
 not	
 included	

The FDTP uses several standard vocabularies but they are not included in the
FDTP - they are only referred to. This means, for example, that the FDTP
includes only the code of the method type 'D' but not the whole term
'Aggregation of contributing analytical results'. The Web services follow the
same convention and all terms from the standard vocabularies have been
excluded. This also means that these fields can not be used in the FDQL
sentences even some of them were used in the use cases. Only terms that
have been included are the original food classification (origgpcd in the FDTP)
and the original component name (origcpnm in the FDTP) which are local and
not part of any the standard vocabulary. However, the user applications may
of course utilize the terms from the standard vocabularies as a part of their
query interface or presenting the query results in the more understandable
way.

FoodLanguaLs	
 cover	
 food	
 description	

Food LanguaL descriptors cover all harmonized food classifications and
general food description (in the Technical Annex). The Technical Annex
defines several property identifiers (like e.g.'COOKMETH') for food
classification and food description but in the FCDBs they may be organized in
several tables. However, as the facet of all LanguaL codes can be detected
by the first letter (e.g. 'C1234' belongs to LanguaL facet C 'Physical State
Shape or Form'), they are treated under the same concept (as
FoodLanguaLs) and the codes must be mapped in the translation process
according to the FCDB structure. Also the FDTP groups them under the

FoodClasses element. Only non-LanguaL classification is the original local
food classification.

Limitation	
 of	
 use	
 in	
 different	
 clauses	
 of	
 the	
 FDQL	

Current specification includes only Web services with priorities 1-2. This
means that some features are not supported. See the FDQL reserved words.

Additional	
 information	
 in	
 the	
 metadata	

It was found useful to include optional open parameters with the FDQL
sentence. These Entity-Attribute-Values may be used by the Web service
providers and user applications for features not included in these
specifications. A new element AdditionalInformation was added to the
metadata-section.

Component	
 Values	
 allowed	
 in	
 WHERE	

ComponentValues are allowed in the WHERE –clause.

Additional	
 information	
 in	
 the	
 original	
 food	
 classification	

FDQL does not define any specific food classification. Some FCDBs may use
several different food classifications. An attribute has been added to the
element ClassificationConditionField. The attribute targetClassification can be
used for specifying the classification. However, this specification does name
any specific classifications which should be supported or reserved words for
any specific classification.

Experimental	
 feature	
 using	
 the	
 energy	
 distribution	
 	

Energy distribution gives summary information of a food item such as how
many percentages of the total energy are from the proteins. Typically, this
information is given for proteins, carbohydrates and fats and is an important
part of the nutrient profile. However, the current rules for the calculation of the
energy are not coherent and usually FCDBs do not contain values except total
energy. Thus, the feature is only experimental.

FDQL	
 Reserved	
 Words	

The FDQL reserved words are either words defining the FDQL language
structure or the data content. The FDQL language structure is defined by the
XML schema with the element names and the attribute names , which are all

reserved words (see FDQL Implementation). The language content is based
on the concepts used in the FDTP and in the Technical Annex. There are also
minor differences between FDTP and the Technical Annex - in such cases we
use the convention of the FDTP. Note that the FDTP and Technical Annex
include several fields which may be included in the FDTP content but are not
included in the FDQL (like e.g. remark). The reserved terms are also included
in the XML schema (see FDQL implementation).

Table 3. Food related terms. =allowed, =not allowed

Entity Term SELECT
-clause

WHERE
-clause

ORDER
BY-
clause

Comment

Food origfdcd CommonConditionFie
ld

FoodLangual
Code

FoodIdentifier
Langual

 WHERE-clause
defines the search
scope (BT/NT),
ClassificationConditio
nField

FoodName FoodName NameConditionField.
The language is
defined by the
language attribute

OriginalFood
Classification

origgpcd ClassificationConditio
nField

Recipe Recipe
Ingredient Ingredient
Food FoodAll Group term. See

Semantic rules
Food FoodAll

Mandatory
 Group term. See

Semantic rules
Food FoodAllMinimu

m
 Group term. See

Semantic rules
Food FoodList Group term. See

Semantic rules

Table 4. Component related terms. =allowed, =not allowed
Entity Term SELECT-

clause
WHERE-
clause

ORDER
BY-
clause

Comment

Component ecompid WHERE-clause
defines the
search scope
(BT/NT),
ClassificationCo
nditionField

Component origcpcd CommonConditi
onField

ComponentNa
me

origcpnm NameCondition
Field. The
language is
defined by the
language
attribute

Component ComponentAll Group term. See
Semantic rules

Component ComponentAll
Mandatory

 Group term. See
Semantic rules

Component ComponentAll
Minimum

 Group term. See
Semantic rules

Component ComponentList Group term. See
Semantic rules

Table 5. Component Value related terms. =allowed, =not allowed
Entity Term SELECT-

clause
WHERE-
clause

ORDER
BY-
clause

Comment

ComponentVal
ue

SelectedValue ValueConditionF
ield

ComponentVal
ue

Minimum ValueConditionF
ield

ComponentVal
ue

Maximum ValueConditionF
ield

ComponentVal
ue

Mean ValueConditionF
ield

ComponentVal
ue

ComponentValue
All

 Group term. See
Semantic rules

ComponentVal
ue

ComponentValue
AllMandatory

 Group term. See
Semantic rules

ComponentVal
ue

ComponentValue
AllMinimum

 Group term. See
Semantic rules

QualityIndex QualityIndex Group term for
all quality
indeces. See
Semantic rules

MethodSpecific
ation

Method
Specification

 Group term for
all
MethodSpecifica
tion fields See
Semantic rules

Sample Sample Group term for
all sample fields.
See Semantic
rules

ContributingVal
ue

Contributing
Value

 Group term for
all contributing
values. See
Semantic rules

ValueStatistics ValueStatistics Group term for
all value
statistics. See
Semantic rules

NoOfAnalytical
Portions

NoOfAnalytical
Portions

 Group term for
Number of
analytical
portions. See
Semantic rules

Reference ValueReference Group term for
value reference.
See Semantic
rules

Reference Method
Reference

 Group term for
method
reference. See
Semantic rules

EnergyDistribut
ion

Energy
distribution

 Experimental
ValueConditionF
ield. See
semantic rules.

Table 6. Metainformation terms. =allowed, =not allowed

Entity Term SELECT-
clause

WHERE-
clause

ORDER
BY-
clause

Comment

Metadata Content Group term.
See Semantic
rules

Metadata Count Group term.
See Semantic
rules

Metadata AvailableFoods Group term.
See Semantic
rules

Metadata Available
Components

 Group term.
See Semantic
rules

Metadata SupportedSelect
Terms

 Group term.
See Semantic
rules

Metadata SupportedWhere
Terms

 Group term.
See Semantic
rules

Metadata SupportedOrder
ByTerms

 Group term.
See Semantic
rules

FDQL	
 Implementation	

The FDQL sentence in the request is formed in XML and it MUST be validated
by EuroFIR Web Service FDQL Sentence Schema. This XML schema
provides aids for checking the FDQL sentence syntax before translating it to a
partner specific FDBC query/queries.

• MUST use either the UTF-8 (13) encoding.
• UTF-8 is RECOMMENDED as FDTP uses that as default encoding in

the future.
• MUST be a well-formed (XML 1.0) document (14)

FDQL	
 Sentence	
 Structure	
 in	
 XML	

The XML schema (published in the EuroFIR AISBL website (1)) gives the
detailed documentation of the FDQL sentence. The FDQL sentence has four
main elements:

1. MetaData
2. SelectClause
3. WhereClause
4. OrderByClause

MetaData	

MetaData describes the XML schema and its version. This XML schema can
be used in the validation.

SelectClause	

SelectClause defines the needed information content.

WhereClause	

WhereClause may restrict the retrieved information content.

OrderByClause	

WhereClause may order the retrieved information content.

Example	
 of	
 the	
 FDQL	
 Sentence	

NOTE: The example is just an arbitrary example and it is constructed for
demonstration of the language features. Some features like e.g. giving the
search condition with component value range do not belong to the current
implementation of the Web services even they are features of the FDQL. The
XML schema for the FDQL sentence and the XML schema used in the
reserved words are published in separate documents in the EuroFIR AISBL
website (1).

<FDQL_Sentence>
 <MetaData>

 <SchemaVersion>1.2</SchemaVersion>
 <Schema> EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>origfdcd</FieldName>
 <FieldName>FoodName</FieldName>
 </SelectClause>
 <WhereClause>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <CommonConditionField>
 <FieldName>origfdcd</FieldName>
 </CommonConditionField>
 <ConditionOperator>=</ConditionOperator>
 <ConditionValue>1234</ConditionValue>
 </Condition>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <NameConditionField language="en">
 <FieldName>FoodName</FieldName>
 </NameConditionField>
 <ConditionOperator>LIKE</ConditionOperator>
 <ConditionValue>Somethi%</ConditionValue>
 </Condition>
 <Condition xsi:type="T_InCondition" logicalOperator="OR">
 <ClassificationConditionField searchScope="BT">
 <FieldName>FoodIdentifierLangual</FieldName>
 </ClassificationConditionField>
 <ConditionOperator>IN</ConditionOperator>
 <ConditionValue>A1234</ConditionValue>
 <ConditionValue>A3456</ConditionValue>
 <ConditionValue>G1234</ConditionValue>
 </Condition>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <NameConditionField language="en">
 <FieldName>FoodName</FieldName>
 </NameConditionField>
 <ConditionOperator>LIKE</ConditionOperator>
 <ConditionValue>Porridge</ConditionValue>
 </Condition>
 <Condition xsi:type="T_BetweenCondition" logicalOperator="AND">
 <ValueConditionField ecompid="VITA" matrixUnit="D" unit="ug">
 <FieldName>SelectedValue</FieldName>
 </ValueConditionField>
 <ConditionOperator>BETWEEN</ConditionOperator>
 <ConditionValue>1</ConditionValue>
 <ConditionValue>100</ConditionValue>
 </Condition>
 </WhereClause>
 <OrderByClause>
 <OrderByField orderingDirection="ASC">
 <FieldName>origfdcd</FieldName>
 </OrderByField>
 <OrderByField orderingDirection="DESC">
 <FieldName>ComponentName</FieldName>
 </OrderByField>
 </OrderByClause>
</FDQL_Sentence>

Semantic	
 Rules	
 for	
 the	
 FDQL	
 Sentence	
 Translation	

General	
 Interpretation	
 Rules	

Main	
 entities	
 and	
 their	
 subordinate	
 entities	

The FDQL Data model defines the main entities: There are three main entities

1. Food
2. Component
3. Component Value

As shown in the data model, other entities, the subordinate entities, are
associated with these main entities. In the FDTP we again find these same
main entities. They are, however, presented with XML elements, and they
form a Food-oriented structure: Food à Component à Component Value.

This Food-oriented structure guides the FDQL sentence translating process:
first we try to find out which Foods are needed in the process (if any), then we
see which Components are needed (if any) and finally which Component
Values should be retrieved.

Inclusion	
 principle:	
 No	
 subordinate	
 entity	
 without	
 the	
 main	

entity	
 	

A subordinate entity may not exist alone: e.g. if there is a Food name, there
must also be Food.

This gives us the inclusion principle: if the subordinate field is used in the
FDQL sentence, the translation MUST include the related main entity - even
the main entity is not mentioned in the FDQL sentence.

Return	
 only	
 what	
 is	
 requested	

If some entity (main or subordinate) is not requested it, SHOULD NOT be
used in the translation or in the data retrieval. For example, if
ComponentValueAllMinimum is requested, do not include the Sample.

Supplement	
 principle:	
 Group	
 term	
 takes	
 everything	
 available	

from	
 the	
 entity	

There are several group terms (see Reserved words) which imply retrieving
the whole entity content. Using the group term implies the supplement
principle: If the group term relates to a main entity, then take this main entity
and all its subordinate entities - take every available field from them

(mentioned or not). If the group term relates to a subordinate entity, then take
every available field from this entity. Following this supplement principle is
REQUIRED.

Fox example the group term ‘AllComponentValue’ means that every entity
from Method specification to Reference has to be included. Equally, if we use
the group term ‘QualityIndex’, this implies taking all different fields of the
QualityIndex. Note, that sometimes other rules limit effect of the
supplementation principle. For example, FoodAllMinimum defines that not all
fields or entities are included even the supplementation principle says that we
should take everything.

Respect	
 the	
 FCDB	
 rules	

When the food information is retrieved, it will be eventually compiled in the
form of the FDTP. Using the FDTP sets certain minimum requirements,
meaning that some mandatory entities have to be included even not
mentioned in the FDQL sentence. Currently there are minimum requirements
and then a somewhat larger set of fields and entities defined in the FDTP and
in the Technical Annex as mandatory. Following the FDTP requirements is
REQUIRED. The only exceptions are specifically mentioned (e.g. like
MetaInformation and Component list) in the semantic rules of the specific Web
services. Moreover, the FDTP structure also defines the content and the order
of the elements and SHALL NOT be overruled by the order of the fields in the
SELECT-clause.

Joins	
 Between	
 the	
 Entities	

The existing food composition information is quite heterogenic: Many of the
fields are optional and even mandatory information might not be
comprehensive in the time being. FCDBs and their management systems are
in many cases in the middle of the development process and the
harmonization of the food information is not yet complete. This means that
different Web service providers may support different selections of fields and
even the field is supported the information might not be comprehensive, for
example, for every food. To summarize: we do not have all information about
all fields available.

In general, we try to provide as much information that is possible. This means
that there will always be "holes" in the datasets - or NULLs if we use relational
database terminology. If we think our main entities, the only thing which
always exists: the Component Value has always the Component and the
Food. Still, there may be Foods without Component Values. These facts give
us five entity joining principles:

1. The left outer join is the basic join between the main entities Food and
Component Value (from Food to Component Value). Food may or may
not have Component Values but a Component Value cannot exist
without Food.

2. If there are, however, WHERE-clause conditions limiting Component
Values, the join between the Food and Component Value is inner join.

3. The left outer join is basic join between the main entities Component
and Component Value (from Component to Component Value).
Component may or may not have Component Values but a Component
Value cannot exist without Component. The FDTP is, however, Food-
oriented meaning that Components without any Component Values will
never be retrieved –Component List and Metainformation are the only
exceptions. Thus, normally the inner join can be used between the
Component and the Component Value.

4. The left outer join is basic join between the main entities and its
subordinate entities (from the main entity to the subordinate entity).

5. If there are, however, WHERE-clause conditions limiting the
subordinate entity, the join between the main entity and the subordinate
entity is inner join.

The principles 1-3 mean that if we have, for example, AllFromFood,
AllFromComponent, AllFromComponentValue, we shall take all foods with or
without Component Values (i.e. even the Component Values were missing)
(principle 1, left outer join). However, the FDTP is food oriented and so we will
not be able to take Components without any Foods (principle 2) In
comparison, if there are WHERE-clause conditions e.g. for the Component
Value, the Foods without any Component Values would automatically be
excluded from the dataset (principle 2, inner join). However, if the WHERE-
clause was only for the Food, then that would not have any effect on the
Component Value: so again we take Foods even they had no Component
Values (principle 1 left outer join) – that Component Value element would be
empty in such case.

Another example: We have AllFromFood, meaning that all Food names will be
retrieved (principle 4 left outer join): those with the scientific name or without
the scientific name. However, if we had a WHERE-clause condition
concerning the scientific name, we would take only Foods having that
scientific name (excluding Foods without any scientific name or with scientific
names not matching the condition) (principle 5, inner join).

Following these joining principles is REQUIRED. However, as the FCDBs are
different (with different table structures, different database management
systems etc.), there may be situations where the principles should not be
taken literally. Sometimes, for example, the outer joins could be implemented
by looping and inner joins – only the result has to be the same. The key issue
is to respect the purpose of the principles and this can be achieved with
various ways.

It should be stated that of course the join should not be made if the entity is
not needed at all: if the FDQL sentence uses only foods, there is no need to
make the unnecessary joins with the Component (or Component Values).

NULLs	
 will	
 produce	
 empty	
 elements	
 (or	
 attributes)	

It is obvious that the left outer joins produce many NULL values. For example,
if we join a Component Value with a Sample and there is no Sample, all
Sample fields will be NULL. These NULLs are translated to empty elements
(or attributes) when the FDTP is compiled i.e NULLs are treated as empty.
However, in many cases including the empty elements to the FDTP is not
necessary (or not allowed) – especially if they are not required elements or
attributes.

Validation	
 of	
 the	
 FDQL	
 Sentence	

The XML schemata define the FDQL sentence structure (published in the
EuroFIR AISBL website (1)). Moreover, they define, which of these terms
could, in general, be used in SELECT, WHERE and ORDER BY-clauses (see
also FDQL reserved words). Thus, the XML schema is used for validation. If
the term used in the FDQL sentence is not among the reserved terms or if the
FDQL sentence is not proper, the Web Service SHALL interrupt and send a
proper error message (See Error messages and error codes). In addition,
different Web Services may have additional restrictions: some terms are not
allowed in every Web service.

The validating abilities of the XML schemata are not comprehensive. This
means that some term may pass the validation but is not supported in the
FCDB (e.g. like Original Food Classification). Moreover, the schema is able to
validate whether the SELECT-clause is empty but not whether the fields are
suitable for the task. For this, there are semantic rules and some Web
services may have their own, additional, semantic rules. In addition, the
semantic rules may cause complications needing further checking. The rules
might e.g. omit all the fields in the SELECT-clause (as not supported fields).
To prevent this, there is yet another rule: SELECT-clause SHALL NOT be
empty after potential omitting. In such case, the Web service is interrupted
and an error message is sent (See Error messages and error codes).
Moreover, the current XML schemata do not cover all standard vocabularies
and it is not possible to validate e.g. whether a certain LanguaL code exists or
not. Checking these is left outside the scope of the current validation
procedures – but of course no data will be retrieved with a non-existing code.

Omitting	
 fields	
 is	
 possible	
 in	
 the	
 SELECT-­‐clause	
 and	
 in	
 the	

GROUP	
 BY	
 -­‐clause	

There may be occasions where some field is not supported by some Partner
Web Service for the reasons explained before. This may happen even the
field is one of the reserved words i.e. it passes the XML schema validation. If
the field is not supported, it SHALL be omitted from the SELECT and GROUP

BY -clauses but the retrieval process SHALL continue normally. Leaving out
unsupported fields does not have any effect.

Omitting	
 fields	
 is	
 not	
 possible	
 in	
 the	
 WHERE-­‐clause	

Similarly, some WHERE-clause fields may not be supported. Contrasting with
the rather harmless effect on the SELECT-clause, omitting a field from
WHERE-clause would change the result considerably. Thus, if the field is not
supported, the Web service will be interrupted and return a proper error
message (See Error messages and error codes).

WHERE-­‐clause	
 Evaluation	

As stated before, the entities have predefined associations which will be
commonly implemented by SQL joins or SQL WHERE clauses in the
translation process. Contrasting with these SQL WHERE clauses or joins, the
FDQL sentence WHERE-clause SHALL be interpreted always restrictive: i.e.
FDQL sentence WHERE-clause can not expand the original joins. This is
equal with the situation where the whole FDQL sentence WHERE -clause is
connected with the AND-operator with the previous predefined SQL joins. This
means that the first logicalOperator of the Condition-elements will always be
interpreted as ‘AND’, because it links all Condtion-elements with the joins.
(We can not leave it empty because the XML schema says that the
logicalOperator attribute is mandatory for all Condition-elements).

The FDQL sentence WHERE-clause may contain several Condition-elements.
Condition-elements have a REQUIRED logicalOperator (AND|OR|AND
NOT|OR NOT) defining the connection between two Conditions. All Condition-
elements are evaluated from top to bottom. There is no other precedence
between logicalOperators other than the order of the Condition-elements. This
means that the order in which the Condition-elements are presented has in
many cases a significant effect on the query result and this has to be taken
into account in the query design. All other logicalOperator-attributes connect
two consecutive Condition-elements. Following this order is REQUIRED.

Example	
 of	
 the	
 evaluating	
 order	
 of	
 Condition-­‐elements	

(simplified	
 elements)	

is interpreted like

<Condition logicalOperator="AND">foo</Condition>
<Condition logicalOperator="OR">bar</Condition>
<Condition logicalOperator="AND NOT">something</Condition>
<Condition logicalOperator="OR NOT">something2</Condition>

(join-operations) AND (((foo OR bar) AND NOT something) OR NOT something2)

Ordering	
 with	
 the	
 ORDER	
 BY	
 -­‐clause	

As stated many times, the FDTP is Food –oriented. This means that we are
not able to order the data content any way we would like to. However, we may
use ORDER BY for subordinate entities inside Food, inside Component and
inside Component Value. There are also some (MetaInformation) services
which are not so tightly bound with the FDTP structure.

Food	
 related	
 semantic	
 rules	

FoodAll	

Term "FoodAll" is a group term, which refers to all existing food related fields
in the FCDB in the Technical Annex. There may be, however, some limitations
in the implementation because the rules for the implementation may be
incomplete all of them in the FDTP. The term is allowed only in the SELECT-
clause.

FoodAllMandatory	

Term "FoodAllMandatory" is a group term, which refers to all food related
fields in the FCDB defined in the Technical Annex defined as mandatory.
There may be, however, some limitations in the implementation because the
rules for the implementation may be incomplete all of them in the FDTP (e.g.
reference). The term is allowed only in the SELECT-clause.

FoodAllMinumum	

FoodAllMinumum is a group term, which refers to all food related fields in the
FDTP defined in the minimum requirements. Allowed only in the SELECT-
clause.

FoodIdentifierLangual	

Term "FoodIdentifierLangual" refers to all LanguaLs in the FoodClasses (see
also FoodLanguals in the FDQL Data model). Used allways with a
searchScope attribute: Broader term (BT) / Narrower term (NT). As explained
in the Background report, the narrower term refers to a search by a specific
LanguaL code and the broader term is hierarchical. A broader term always
yields results to all narrower terms as well.

EuroFIR	
 Food	
 Classification	

EuroFIR Food Classification is part of the LanguaL A facet (Product type, sub-
tree under code A0777) and is treated as part of the LanguaLs (see
FoodIdentifierLangual).

OriginalFoodClassification	

Term "origgpcd" refers to the original food classification scheme. Used always
with a searchScope attribute: Broader term (BT) / Narrower term (NT). The
implementation of the original food classification varies because as on
optional classification it may not exist at all. Even if the classification exists the
classification schemes are different. Thus, the implementations differ and
especially whether the attributes NT (narrower term) or BT (broader term)
have any effect depends very much about the classification.

FoodNames	

FDQL sentence uses FoodNames with a mandatory language attribute.
Implementing this is REQUIRED. The FDQL sentence uses a language
attribute (comparable with xml:lang see RFC 3066 (12)) which is equal with
the FDTP convention (ISO 639 2 character code for language (10) plus an
optional 2 character standard ISO country code (10)). Language "tx" is
reserved for scientific names. The existence of the language attribute is
validated with the schema but the content is not. The translation is
RECOMMENDED to check that the sentence language code is one of those
available (i.e. supported) in the FCDB (See Error messages and error codes).

FoodNames may be preferred or synonyms (see the FDTP). However, these
are not separeted in the FDQL sentence. Only the preferred name is
REQUIRED in the implementation of the query translation. There is no term or
attribute available in the FDQL sentence specifying whether some name e.g.
in the WHERE-clause is preferred or synonym.

Recipe	

Term "Recipe" refers to the whole recipe content of the FDTP and it is a group
term meaning all elements under the Recipe element. Term is allowed only in
the SELECT-clause.

FoodList	

Term "FoodList" is a group term, which refers to the FoodDescription element
(without Recipe) from FDTP. The term is used only in the Web Service
GetFoodList.

Component	
 Related	
 Rules	

ComponentAll	

Term "ComponentAll" is a group term, which refers to all existing component
related fields in the FCDB defined in the Technical Annex. There may be,
however, some limitations in the implementation because the rules for the

implementation may be incomplete all of them in the FDTP. The term is
allowed only in the SELECT-clause.

ComponentAllMandatory	

Term "ComponentAllMandatory" is a group term, which refers to all
component related fields in the FCDB defined in the Technical Annex defined
as mandatory. The term is allowed only in the SELECT-clause.

ComponentAllMinimum	

ComponentAllMinumum is a group term, which refers to all component related
fields in the FDTP defined in the minimum requirements. The term is allowed
only in the SELECT-clause.

OriginalComponentName	

The terms "OriginalComponentName" and "origcpnm" refer to the
OriginalComponentName. Components do not have any other "official" name
than the name (or Term) from the EuroFIR Component Thesaurus. However,
as part of all the Standard Vocabularies, this has been excluded from the Web
Service data model (see FDQL Data model) and this term are currently not
used (use leads to interruption and error message). However, the term is still
part of the reserved words in the XML schema and the schema validation
does not catch this term.

origcpcd	

The terms "origcpcd" refers to the OriginalComponentCode. This field is
mandatory in the Technical Annex and FDTP but, however, it may not exist in
the FCDB (i.e. the FCDB may be based on entirely on the ecompid - in such
case the origcpcd SHALL be interpreted as ecompid).

ecompid	

Term "ecompid" refers to the EuroFIR Component Thesaurus. It is used
allways with a searchScope attribute: Broader term (BT) / Narrower term (NT).
The EuroFIR Component Thesaurus version 1.0 had only one level but since
version 1.1 this thesaurus is hierarchical. This means that currently there are
hierarchical component group codes used together with the component codes
used in the ComponentValues. Thus, the BT/NT should be implemented using
similar search logic as with LanguaL codes (FoodIdentifierLangual). As
explained in the Background report, the narrower term refers to a search by a
specific code and the broader term is hierarchical. A broader term always
yields results to all narrower terms as well.

ComponentList	

Term "ComponentList" is a group term, which refers to ComponentIdentifiers
element of the FDTP. The term is used only in the Web Service Get
Component List. See Get Component List.

	

Component	
 Value	
 Related	
 Rules	

ComponentValueAll	

Term "ComponentValueAll" is a group term, which refers to all existing
Component Value related fields (and entities) in the FCDB defined in the
Technical Annex. There may be, however, some limitations in the
implementation because the rules for the implementation may be incomplete
all of them in the FDTP Allowed only in the SELECT-clause.

ComponentValueAllMandatory	

Term "ComponentValueAllMandatory" is a group term, which refers to all
Component Value related fields (and entities) in the FCDB defined in the
Technical Annex defined as mandatory. The term is allowed only in the
SELECT-clause.

ComponentValueAllMinumum	

ComponentValueAllMinumum is a group term, which refers to all component
value related fields (and entities) in the FDTP defined in the minimum
requirements. The term is allowed only in the SELECT-clause.

QualityIndex	

QualityIndex is a group term, which refers to all QualityIndex related fields.
The term is allowed only in the SELECT-clause.

MethodSpecification	

MethodSpecification is a group term, which refers to all MethodSpecification
related fields. The term is allowed only in the SELECT-clause.

QualityIndex	

QualityIndex is a group term, which refers to all QualityIndex related fields.
The term is allowed only in the SELECT-clause.

	

Sample	

Sample is a group term, which refers to all Sample related fields. The term is
allowed only in the SELECT-clause.

ContributingValue	

ContributingValue is a group term, which refers to all ContributingValue
related fields. The term is allowed only in the SELECT-clause.

ValueStatistics	

ValueStatistics is a group term, which refers to all ValueStatistics related
fields. The term is allowed only in the SELECT-clause.

ValueReference	

ValueReference is a group term, which refers to all ValueReference related
fields. The term is allowed only in the SELECT-clause.

MethodReference	

MethodReference is a group term, which refers to all MethodReference
related fields. The term is allowed only in the SELECT-clause.

NoOfAnalyticalPortionsValue	

NoOfAnalyticalPortionsValue is a group term, which refers to all
NoOfAnalyticalPortionsValue related fields. The term is allowed only in the
SELECT-clause.

EnergyDistribution	

The ComponentValue is used as a percentage of energy from the total energy
of the food. This is possible only for the energy containing nutrients. The term
is experimental.

	

Metainformation	
 Related	
 Rules	

AvailableComponents	

Term ‘AvailableComponents’ is a group term which refers to a similar element
that ComponentList (see Component related rules). Implementation see the
Web service:

• GetFCDBContent

AvailableFoods	

Term ‘AvailableFoods’ is a group term which refers to a similar element that
FoodList (see Food related rules). Implementation, see the Web service:

• GetFCDBContent

Content	

Content is a group term, which refers to the Content-element of the FDTP.
The term is allowed only in the SELECT-clause. Implementation, see the Web
services:

• GetContentInformation
• GetFCDBContent

Count	

Count is a group term, which refers to (group by) counts like e.g. Get Food
Count. (Used because SELECT-clause is mandatory in the FDQL Sentence)
related fields. The term is allowed only in the SELECT-clause.
Implementation, see the Web services:

• GetFoodCount
• GetFoodCountByProductType

SupportedOrderByTerms	

SupportedSelectTerms is a group term referring to the listings of supported
terms and entities in the ORDER BY-clause. Implementation, see the Web
service:

• GetSupportedTerms

SupportedSelectTerms	

SupportedSelectTerms is a group term referring to the listings of supported
terms and entities in the SELECT-clause. Implementation, see the Web
service:

• GetSupportedTerms

SupportedWhereTerms	

SupportedSelectTerms is a group term referring to the listings of supported
terms and entities in the WHERE-clause. Implementation, see the Web
service:

• GetSupportedTerms

Metadata	
 Transport	
 Package	
 (MDTP)	

Metainformation (or metadata) is used for providing information about the
information source i.e. FCDB. Compared with the FDTP, this is used for
providing information about Web service like listing which terms are supported
or which components are available. This information can be used by the user
application or user application providers. Moreover, sometimes the food-
oriented structure is not optimal for data which is not food-oriented and it is
simpler to put that into a slightly different package without unnecessary
bending of the structure or the rules of the FDTP.

Main	
 structure	
 of	
 the	
 MDTP	

While the FDTP has strict rules and is highly standardized, the MDTP is a
multi-purpose transport package. Its main structure is similar to the FDTP and
even the first elements are completely the same:

• StandardVocabularies
• SenderInformation
• Content

The other five elements are optional and their usage depends on the Web
service:

• FCDB_Describe
• ComponentList
• FoodList
• TermList
• Grouping

 	

<EuroFIRMetaDataTransportPackage version="1.2" sentdate="2012-12-24">
 <StandardVocabularies/>
 <SenderInformation/>
 <Content/>
<FCDB_Describe/>
 <ComponentList/>
 <FoodList/>
 <TermList/>
 <Grouping/>
</EuroFIRMetaDataTransportPackage>

Grouping	
 -­‐structure	

Many elements use a multi-purpose Grouping-structure. The structure
consists of MainGroup element and Group element. The Group element has a
label (usually a code of some kind) and value (like e.g. count). If the Grouping
is nested, the Group is surrounded by one or more MainGroups. MainGroup-
elements have only a label but they have no value. Labels have an optional
reference (system) for binding the group to some classification scheme. All
standard vocabularies used with these bindings MUST be declared in the
standard vocabularies section.

Food count example illustrates this grouping structure. First, the Grouping-
element has a title “Food Count By product type”. Then, the Grouping has two
Group-elements: the Label, in this case a product type –code, and the Value
finally presents the count. The system-attribute of the Label binds the group
with the product type of the standard vocabularies.

<Grouping name="Grouping title">
 <MainGroup>
 <Label system="reference to main grouping">Some main group label</Label>
 <MainGroup>
 <Label system="reference to nested grouping">Some nested main group label</Label>
 <Group>
 <Label system="reference to grouping">Group label</Label>
 <Value>1234</Value>
 </Group>
 </MainGroup>
 </MainGroup>
</Grouping>

<Grouping name="Food Count By Product type">
 <Group>
 <Label system="prodtype">A0792</Label>
 <Value>12</Value>
 </Group>
 <Group>
 <Label system="prodtype">A0791</Label>
 <Value>34</Value>
 </Group>
</Grouping>

FCDB_Describe	

This element provides information about the FCDB like e.g. the number of
Foods or Component Values (see Web service GetFCDBContent).

ComponentList	

Components-element is similar to the Component Identifier element in the
FDTP.

FoodList	

Foods-element is similar to the Food Description element in the FDTP but
without Recipe-element.

<FCDB_Describe>
 <Grouping name="Some FCDB description">
 <Group>
 <Label>Food</Label>
 <Value>1000</Value>
 </Group>
 <Group>
 <Label>Component</Label>
 <Value>20</Value>
 </Group>
 <Group>
 <Label>ComponentValue</Label>
 <Value>10000</Value>
 </Group>
 </Grouping>
</FCDB_Describe>

TermList	

TermList-element is used for presenting different lists of terms like the
supported WHERE-clause terms. The entityName-attibute links the term with
the attribute.

Example

Grouping	

Grouping-element is used for similar purposes than the SQL GROUP BY-
clause. It uses the previously defined Grouping-structure

<TermList name="Some list name">
 <Term entityName="Some entity name"/>
</TermList>

<TermList name="Supported Where Terms">
 <Term entityName="Food">origfdcd</Term>
 <Term entityName="Food">FoodIndentifierLangual</Term>
 <Term entityName="Food">FoodName</Term>
 <Term entityName="Component">ecompid</Term>
</TermList>

Web	
 Services	

GetComponentList	

Use	
 Case	

6.5.3 and an alternative path to 6.5.3 defined in page 32 of the Background
report.

Description	

Produces a list of Components. Consists of Component Identifier -elements of
the FDTP

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Semantic	
 rules	

Only allowed SELECT-clause term is ComponentList. WHERE-clause may
include Component related conditions (see reserved words). No ORDER BY-
clause. Because all standard vocabularies are excluded, only ecompid and (if
exits) origcpcd (see FDQL Data model).

Response	

Response uses the Metadata Transport Package (MDTP).

Error	
 messages	

See Error Messages and Error Codes

GetContentInformation	

Use	
 Case	

6.5.1 of the Background report.

Description	

Retrieve FCDB version information defined as the Content element of the
FDTP (All elements before Foods)

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

	

Example	
 of	
 the	
 fdql_sentence	

<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.2</SchemaVersion>
 <Schema> EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>Content</FieldName>
 </SelectClause>
</FDQL_Sentence>

Semantic	
 rules	

Only allowed SELECT-clause term is Content. No WHERE or ORDER BY-
clause (see reserved words).

Response	

Response uses the Metadata Transport Package (MDTP).

Error	
 messages	

See Error Messages and Error Codes

GetFCDBContent	

Use	
 Case	

6.5.1 of the Background report.

Description	

Retrieve FCDB version information and basic information of the FCDB
content.

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Example	
 of	
 the	
 fdql_sentence	

<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.2</SchemaVersion>
 <Schema> EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>Content</FieldName>

<FieldName>AvailableComponents</FieldName>
 </SelectClause>
</FDQL_Sentence>

Semantic	
 rules	

Only allowed SELECT-clause terms are Content, AvailableFoods and
AvailableComponents. No WHERE or GROUP BY-clause. (see reserved
words).

Term Explanation
Content Produces a grouping with the number of available

Foods, number of available Components and
Component Values

AvailableFoods Produces a FoodList of the available foods.
AvailableComponents Produces a ComponentList of the available

components.

Response	

Response uses the Metadata Transport Package (MDTP).

Example	
 	

See Metadata Transport Package (MDTP).

Error	
 messages	

See Error Messages and Error Codes

GetFoodCount	

Use	
 Case	

6.5.5.1 of the Background report.

Description	

A count of available foods. WHERE-clause may include Food related
conditions

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Example	
 of	
 the	
 fdql_sentence	

The example gives a count of Foods which have an English name ‘Avocado’

<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.2</SchemaVersion>
 <Schema> EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>Count</FieldName>
 </SelectClause>
 <WhereClause>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <NameConditionField language="en">
 <FieldName>FoodName</FieldName>
 </NameConditionField>
 <ConditionOperator>LIKE</ConditionOperator>
 <ConditionValue>Avocado</ConditionValue>
 </Condition>
 </WhereClause>
</FDQL_Sentence>

Semantic	
 rules	

Only allowed SELECT-clause terms is count. The WHERE-clause allows only
Food related terms (see reserved words). No ORDER BY-clause

Response	

Response uses the Metadata Transport Package (MDTP).

Example	
 	

Note that StandardVocabularies and SenderInformation have been simplified.

Error	
 messages	

See Error Messages and Error Codes

<EuroFIRMetaDataTransportPackage version="1.2" sentdate="2012-12-24">
 <StandardVocabularies/>
 <SenderInformation/>
 <Content datasetcreated="2012-12-24" language="tlh" acquisitiontype="F”>
 </Content>
 <Grouping name="Food count" type="Level_1">
 <Group>
 <Label>Foods</Label>
 <Value>1234</Value>
 </Group>
 </Grouping>
</EuroFIRMetaDataTransportPackage>

GetFoodCountByProductType	

Use	
 Case	

6.5.5.2 of the Background report.

Description	

A count grouped of available foods. EuroFIR food classification [A0777] will be
used for grouping factor. WHERE-clause may include Food related conditions

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Example	
 of	
 the	
 fdql_sentence	

This example gives a group by count of Foods which have prodtype=’A0790’

<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.2</SchemaVersion>
 <Schema>EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>Content</FieldName>
 </SelectClause>
 <WhereClause>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <ClassificationConditionField searchScope="BT">
 <FieldName>FoodIdentifierLangual</FieldName>
 </ClassificationConditionField>
 <ConditionOperator>=</ConditionOperator>
 <ConditionValue>A0790</ConditionValue>
 </Condition>
 </WhereClause>
</FDQL_Sentence>

Semantic	
 rules	

Only allowed SELECT-clause term is count. WHERE-clause allows only Food
related terms (see reserved words). No ORDER BY-clause

Response	

Response uses the Metadata Transport Package (MDTP).

Example	
 	

see Metadata Transport Package (MDTP).

Error	
 messages	

See Error Messages and Error Codes

GetFoodInformation	

Use	
 Case	

6.2.2, 6.2.3, 6.2.4, 6.3.1, 6.3.2, 6.3.3 and 6.3.4 of the Background report.

Description	

This is the main service for retrieving food information. Retrieve foods,
components and component values using FDQL for the selection options.

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Example	
 of	
 the	
 fdql_sentence	

The example gives all FDTP minimum requirements based information of
Foods which have an English name ‘Avocado’ and VITC from Components
(and Component Values).

<FDQL_Sentence>
 <MetaData>
 <SchemaVersion>1.2</SchemaVersion>
 <Schema>EuroFIR_Web_Service_FDQL_Sentence_version_1_2.xsd</Schema>
 </MetaData>
 <SelectClause>
 <FieldName>FoodAllMinimum</FieldName>
 <FieldName>ComponentAllMinimum</FieldName>
 <FieldName>ComponentValueAllMinimum</FieldName>
 </SelectClause>
 <WhereClause>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <NameConditionField language="en">
 <FieldName>FoodName</FieldName>
 </NameConditionField>
 <ConditionOperator>LIKE</ConditionOperator>
 <ConditionValue>Avocado</ConditionValue>
 </Condition>
 <Condition xsi:type="T_CommonCondition" logicalOperator="AND">
 <ClassificationConditionField searchScope="NT">
 <FieldName>ecompid</FieldName>
 </ClassificationConditionField>
 <ConditionOperator>=</ConditionOperator>
 <ConditionValue>VITC</ConditionValue>
 </Condition>
 </WhereClause>
</FDQL_Sentence>

Semantic	
 rules	

A full set of fields available in SELECT, WHERE and ORDER BY-clauses
(see restrictions and reserved words). Currently no Component Value-related
conditions are allowed in the WHERE-clause

Response	

Response uses the FDTP.

Error	
 messages	

See Error Messages and Error Codes

GetFoodList	

Use	
 Case	

6.5.2 and an alternative path to 6.5.2 defined in page 32 of the Background
report.

Description	

Produces a list of Foods: FDTP Food Description-element without Recipe-
element.

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Semantic	
 rules	

Only allowed SELECT-clause term is FoodtList. No ORDER BY-clause.
WHERE-clause allowes only Food related terms (see reserved words).
FoodList includes all Food related mandatory information of the FDTP Food-
element (not Components or Component Value and their subordinate
entities).

Response	

Response uses the Metadata Transport Package (MDTP).

Error	
 messages	

See Error Messages and Error Codes

GetSupportedTerms	

Description	

Produces a list of terms which are supported by the Partner Web service.

Parameters	

Name Explanation
api_userid User application identification key. See Web

services authentication
api_permission User profile permission, but currently used for

identifying desired database country. See Web
services authentication

fdql_sentence See Food Data Query Language (FDQL).
version Version of the Web service, this version 1.2.
api_signature Message signature. See Web services

authentication

Semantic	
 rules	

Only allowed SELECT-clause terms are supported (see reserved words):

• SupportedSelectTerms – terms supported in FDQL SELECT-clause
• SupportedWhereTerms – terms supported in FDQL WHERE-clause
• SupportedOrderByTerms – terms supported in FDQL ORDER BY-

clause

No WHERE/ORDER BY-clause.

Response	

Response uses the Metadata Transport Package (MDTP).

Example	
 	

Note that StandardVocabularies, SenderInformation and Content have been
simplified

EuroFIRMetaDataTransportPackage version="1.2" sentdate="2012-12-24">
 <StandardVocabularies/>
 <SenderInformation/>
 <Content/>
 <TermList name="Supported Where Terms">
 <Term entityName ="Food">origfdcd</Term>
 <Term entityName ="Food">FoodIndentifierLangual</Term>
 <Term entityName ="Food">FoodName</Term>
 <Term entityName ="Component">ecompid</Term>
 </TermList>
</EuroFIRMetaDataTransportPackage>

Error	
 messages	

See Error Messages and Error Codes

	
 Error	
 Messages	
 and	
 Error	
 Codes	

It is a common fact that there are no systems without errors. In such case the
Web service SHALL send a proper error message and give user application
as much information as possible about what went wrong. These error codes
and error messages are, however, the minimum reporting when an error
occurs and using them is REQUIRED.

The error message response includes first the SOAP standard fault code in
the faultcode-element. Then our error message is in the faultstring-element.
These are REQUIRED. The Web service MAY give additional information in
the detail-element: the sub-element ‘errorcode’ is reserved for our error code
and the sub-element ‘reason’ for a detailed error description with a free text
(see Web Service Response).

The error list covers the most probable errors. Some of the error codes are
mentioned in the other parts of the specification and some are not. All of these
error codes, however, may be used. Some of the error codes are quite
general and some are very specific.

Table 7. Errors when the request is received.

Error message Error code
Request receive
error

 E1000

 Consumer error E1010:
 Formatting error E1011
 Server not responding E1012
 Unexpected response E1013
 Server error E1020
 Unknown request format E1021
 Parameter mismatch with the service E1022
 Non-existing service E1023

Table 8. Errors during the authentication
Error message Error code
Request
authentication
error

 E2000

 Pre-
authentication
error

 E2010

 No user application identification key
(api_userid)

E2011

 No message signature
(api_signature)

E2012

 No response from authentication
server

E2013

 Authentication
error

 E2020

 Invalid user application identification
key (api_userid)

E2021

 Invalid message signature checking E2022
 Post-

authentication
error

 E2030

 Access denied to user E2031
 Undefined user application

permission key (api_permission)
E2032

Table 9. Errors during the FDQL sentence processing and query
Error message Error code
FDQL sentence
processing error

 E3000

 FDQL Pre-
processing error

 E3010

 Error parsing query parameters E3011
 FDQL validation error E3012
 FDQL translation error E3013
 FDQL unknown field error E3014
 FDQL empty select fields E3015
 FDQL non-existing field error E3016
 FDQL field not supported in the FDQL E3017
 FDQL select field not supported in the

FDQL
E3018

 FDQL where field not supported in the
FDQL

E3019

 FDQL order by field not supported in
the FDQL

E3020

 FDQL field translation error E3021
 FDQL select field translation error E3022
 FDQL where field translation error E3023
 FDQL order by field translation error E3024
 FDQL field mismatch error E3025
 FDQL select field mismatch error E3026
 FDQL where field mismatch error E3027
 FDQL order by field mismatch error E3028
 FDQL language code not supported E3029
 FDQL standard vocabulary not

supported
E3030

 FDQL standard vocabulary code not
supported

E3031

 FDQL language code not supported E3032
 FDQL LanguaL code not supported E3033
 FDQL LanguaL facet not supported E3034
 Permission limitations E3098
 No response from data source E3099
 FDQL Data

processing error
 E3100

 Data source reported error - ACL
Limitations

E3101

 Data source reported error - query
error

E3102

 Data source reported error -
result/viewing error

E3103

 FDQL Post data
process/result
formulation error

 E3130

 Error in parsing dataset E3131

Table 10. Errors during the return of the data and unknown error
Error message Error code
Data return error E4000
 Response

formulation
error

 E4010

 Error in formulating response -
missing data

E4011

 Error in XML creation E4012
 Clean up error E4020

Unknown error E5000

References	

(1) EuroFIR AISBL. EuroFIR - Your source of food information; Available at:
http://www.eurofir.org/. Accessed 2/4, 2015.

(2) W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
2007; Available at: http://www.w3.org/TR/soap12-part1/. Accessed 2/4, 2015.

(3) Møller A, Unwin ID, Ireland J, Roe MA, Becker W, Colombani P. The
EuroFIR Thesauri 2008 - EuroFIR Technical Report D1.8.22; Available at:
http://www.eurofir.org/wp-
content/uploads/TechWeb%20Downloads/Thesauri/EuroFIR_Thesauri_2008.
pdf. Accessed 2/4, 2015.

(4) Becker W, Unvin I, Ireland J, Møller A. Proposal for structure and detail of
a EuroFIR standard on food composition data I: Description of the standard.
2007.

(5) Becker W, Møller A, Ireland J, Roe M, Unvin I, Pakkala H. Proposal for
structure and detail of a EuroFIR standard on food composition data II:
Technical Annex. 2008.

(6) Møller A, Christensen T. EuroFIR Web Services - EuroFIR Food Data
Transport Package, Version 1.4. 2012.

(7) Møller A, Ireland J. LanguaL 2012 – The LanguaL Thesaurus. 2012
http://www.langual.org/langual_Downloads.asp.

(8) Pakkala H, Christensen T, Gunnarsson Í, Kadvan A, Keshet B, Korhonen
T, et al. EuroFIR Web Services: Background Report. 2008.

(9) Bradner S. RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels. Best Current Practice. 1997; Available at:
http://tools.ietf.org/html/rfc2119. Accessed 2/4, 2015

(10) International Organization for Standardization. ISO 639:1988 (E/F). Code
for the Representation of Names of Languages. 1988.

(11) International Organization for Standardization. ISO 3166-1 Codes for the
representation of names of countries and their subdivisions. 1997.

(12) Alvestrand H. RFC 3066: Tags for the Identification of Languages. 2001;
Available at: http://www.ietf.org/rfc/rfc3066.txt. Accessed 2/4, 2015.

(13) Yergeau F. RFC 3629. UTF-8, a transformation format of ISO 10646.
2003; Available at: http://tools.ietf.org/html/rfc3629. Accessed 2/4, 2015.

(14) W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). 2008;
Available at: http://www.w3.org/TR/REC-xml/. Accessed 2/4, 2015.

(15) Eastlake D, Jones P. RFC 3174 - US Secure Hash Algorithm 1 (SHA1).
2001; Available at: http://www.ietf.org/rfc/rfc3174.txt. Accessed 2/4, 2015.

